

Modern optics drawings update: translating from American MIL drawings to ISO 10110

Reference to interpret ISO 10110 drawings (2023 Update)

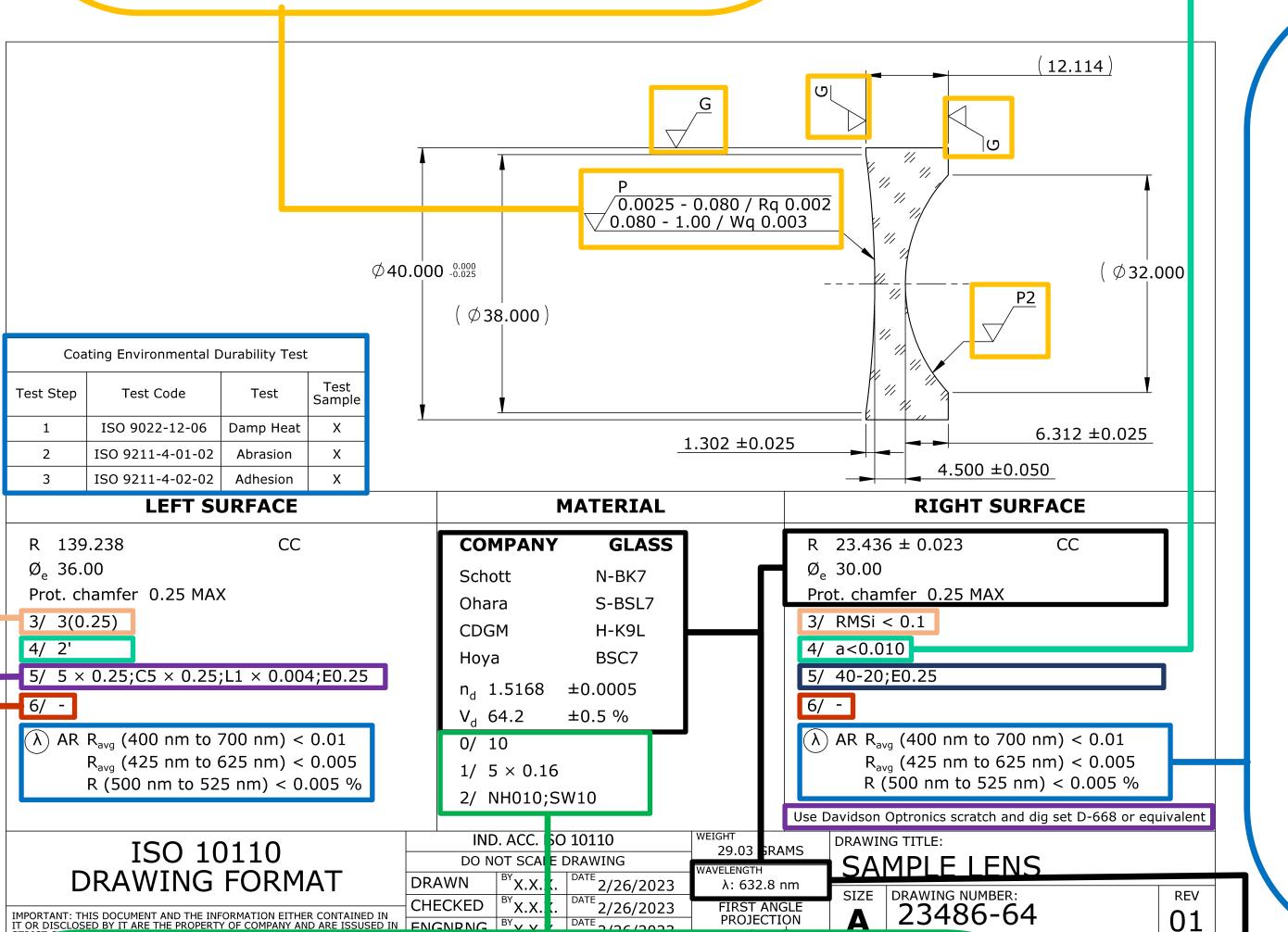
Full standard contains complete descriptions and explanations for proper use

David M. Aikens, Eric Herman, and Richard N. Youngworth

Reference Citation: Aikens, D. M., Herman E., Youngworth, R. N., "Modern optics drawings to ISO 10110." Proc. SPIE, 12669, Optomechanical Engineering 2023 (2023).

Surface Form Tolerances and Evaluation^{5, 20}

- Units are preferred to be in nm, but allowed in µm or fringes
- If fringes are the unit specified, a wavelength needs to be defined either
- in the title block or for the tolerance • Written as $3/A(B/C) PV(D) RMSx < E; \lambda = W$
 - A = power: PV approximation spherical wavefront
 - When a dash is listed no tolerance applies otherwise
 - a default power tolerance is present
 - B = irregularity: PV wavefront irregularity • C = rotationally invariant irregularity: PV rotational invariant irregularity
 - D = total deviation: PV total wavefront deviation


 - E = rms deviation; where x is
 - t = total rms surface deviation
 - i = rms surface deviation with power removed
 - a = asymmetric variant rms surface irregularity
 - W = wavelength (λ) in nm
 - If wavelength is not indicated in the title block, it must be specified in the tolerance
- Other than power, when a dash or nothing is listed in place of one of the tolerances, that type of tolerance will not be applied
- Further forms of surface form tolerances can be applied, such as surface slope or Zernike coefficients
 - Slope is written as 3/ ΔS_{v,w}(F/G/H)
 - v = number of dimensions (1 or 2)
 - w = orientation
 - $F = Max slope deviation (\xi)$
 - G = sampling length
 - H = spatial sampling interval
 - Zernike coefficients written specifically as 3/ Z(n, m) (PV < O; RMS < P)
 - Z(n, m) = Zernike radial polynomial • O = PV surface form deviation
 - P = rms surface form deviation
- Surface Imperfection Tolerances and Evaluation^{7, 21}
- Imperfections can be described by two methods
 - Visibility imperfections (MIL historical standard): 5/ S-D; CS'-D'; EA
 - Each group represents different types of imperfections • S-D = general surface scratch and dig designation
 - CS'-D' = coated aperture scratch and dig designation
 - EA = edge chips
 - A drawing note stating the make and model of the comparison standard to be used is necessary
 - Accumulation and concentration rules apply
 - Dimensional imperfections (DIN historical standard): $N_a \times A_a$; $CN_c \times A_c$; $LN_l \times A_l$; EA_e
 - Each group with a different prefix designation classifies types of imperfections
 - No Prefix = general surface imperfections • C = coated aperture imperfection designation
 - L = long scratches outside of general surface grades
 - E = edge chips Each designation is listed in two methods
 - - N = Number of imperfections within a grade class
 - A = Grade class to characterize imperfections Accumulation and concentration rules apply
- Laser Damage Threshold^{17, 31, 32}
- Written as 6/ X_{th}; λ; τ_{th}
 - X can either be one of three conditions depending on the type of laser irradiation
 - Pulsed laser irradiation:
 - H_{th} = Threshold energy density in units of J/cm² E_{th} = Threshold power density in units of W/cm²
 - Long pulse or CW laser irradiation
 - F_{th} = Threshold linear power density in units of W/cm
 - A pulse is considered long when the thermal transit distance, $(2 D \tau_{eff})^{1/2}$, is on the order of the size of the test spot d_{T eff}
 - D = Thermal diffusivity
- In both cases, τ_{eff} = Effective pulse duration in units of s When a dash is present following 6/, or the 6/ is not included, the laser damage threshold is not defined and will not be tested

Surface Texture⁸

- Polish code above the texture symbol is either P (polished), G (ground) or P1-P4 (polish grades) which indicate a default specification of surface texture
- Polish grades are standardized surface roughness values over a spatial band of 0.002 mm to 1.00 mm
- Texture requirements written as follows
 - Each requirement on its own line, showing a spatial wavelength band and a surface texture specification separated by a /
 - Spatial wavelengths are given in mm
 - Rq indicates rms surface roughness in microns
 - Wq indicates rms surface waviness in microns
 - Sq indicates the areal rms surface texture in microns • RΔq indicates rms surface slope in microradians
 - PSD indicates the maximum value of the power spectrum over the specified spatial wavelength band, given as a power coefficient and an intercept in nm² mm
- When upper and lower limits are provided they are indicated
- When the lay of the measurement is provided it is indicated as R (radial), C (circumferential), \perp (vertical) or = (horizontal).

Surface Centering Error Due to Tilt⁶

- Implicit datums exist for typical, centered, spherical elements. If datum features are unclear, one
- must be specified Written as follows:
 - Spherical Surface: 4/σ
 - σ = maximum tilt relative to either the cylindrical surface (lens edge) or datum axis (optical
 - Aspheric Surfaces or Rotationally Non-Variant Subassemblies: 4/σ(L)
 - $\sigma = \text{maximum tilt}$
 - L = maximum lateral displacement
 - Beam deviation can be specified for the entire lens element: 14/ρ
 - ρ = maximum transmitted beam deviation
 - Surface tilt can alternatively be specified by runout (e.g. lens edge measurement): 4/a < A or 4/c < B
 - A = axial runout at the clear aperture
 - B = circular runout at the surface edge
- Tolerances can be applied as both angular and linear dimensions at single element or assembly
- When a dash or nothing is listed in place of one of the tolerances, that type of tolerance will not be

Surface Treatment and Optical Coatings^{9, 22-26}

- Functional coatings are indicated by a λ inside a circle
- As defined in ISO 9211-2 descriptions and applications of an optical coating must precede the specifications for spectral characteristics (e.g. Antireflecting [AR] or Filtering [FI])
 - Coatings specifications can primarily be broken down into three designations
 - $\tau(\lambda)$ or $T(\lambda)$ = transmission for a waveband
 - $\rho(\lambda)$ or $R(\lambda)$ = reflectance for a waveband
 - $\alpha(\lambda)$ or $A(\lambda)$ = absorptance for a waveband
 - Additional methods are possible to describe an optical
 - coating past the waveband
 - Angle of incidence (AOI)
 - Aperture size Polarization orientation
 - Phase
- Coating durability can be specified on a drawing using a test code, test sequence, and number of samples
- List of possible test codes and sequences are in ISO 9211-3 Test codes are based on ISO 9022, environmental testing
- series, and ISO 9211-4, coating specific durability tests
- Surface treatments Indicated on the optic by a thick chain line adjacent to the
 - Specifications are written in a box with a leader line to the treated region
 - Surface treatment applications

treated region

- mitigate damage to the optic (e.g. handling)
 - Provide functional uses outside main use of the optic (e.g. stray light control)

Materials^{18, 27}

- The following optical material information needs to be listed; either
 - Manufacturer and optical material type
 - Multiple manufacturers may be listed for a given element International glass code
 - The index and Abbe information Material specifications occur at wavelength specific index and Abbe (e.g. n_d and V_d or n_a and V_a)
- However the glass is specified, tolerance on the index and dispersion must be indicated Tolerances for optical materials are determined by three main groups
- Stress birefringence: 0/A
 - A = maximum allowable optical path difference (OPD) in units of nm/cm
 - Value of stress birefringence is based on quality of annealing and optic size Bubbles and inclusions: 1/N x A
- A = grade of the bubbles determined by the square root of the projected area • N = number of allowable bubbles through a method of accumulation

shadowgraph class

- Homogeneity and striae: 2/A;B • A = homogeneity: Maximum permissible PV variation of the refractive index preceded by an "NH" indicator
 - Homogeneity was previously specified by a class indicator • B = striae: amount of wavefront deviation tolerance limit per 50 mm path length in
 - nm, preceded by an "SW" indicator Striae was previously specified by a class indicator or the more common
- Raw material is specified with the same tolerance property, except preceded by zero ("0X/") Tolerance notation is similar to indicators used for homogeneity ("NH") and striae ("SW")

General Notation^{1, 11}

SHEET 1 OF 1

- Drawings can be prepared for an optical element or subassembly Default conditions unless stated otherwise:
- Temperature = 20°C Dimensional Units = mm
- Each tolerance property is applied for multiple cases:
- X/ = element tolerance 1X/ = subassembly tolerance
- 0X/ = raw material tolerance
- Fundamental dimensions for a rotationally invariant optical element
- Radius = dimensional value preceded by an R and the curvature orientation (CX or CC)
- Thickness = dimensional value including tolerance unless specified otherwise
- Diameter (\emptyset) = dimensional value including tolerance Effective diameter (\emptyset_e) = sub-aperture where optical tolerances apply Edge corners
- Bevel = functional corner specified with a dimension, tolerance, and
- Chamfer = nonfunctional corner specified as the maximum or minimum allowed face width
- Unless stated within each tolerance where a wavelength value is necessary, the title block must include reference wavelength
- As of ISO 10110-1 2019 there is no default wavelength Values that do not have tolerances listed, or are meant to be ignored, have a default tolerance

06 - 6.0 / PSD 1.15 / 1.5 - 0.5 / WΔq 150

MATERIAL

N-SF5

 $'27 \pm 0.0002$

25 ± 0.5%

ASPHERIC EQUATION

 $Z(r) = \frac{r^2}{R + \sqrt{R^2 - (1+k)r^2}} + A_4 r^4 + A_6 r^6 + A_8 r^8 + \dots$

SAG TABLE

7.500 0.127

20.000 0.902

ASPH COEFFICIENTS | 12.500 | 0.352

A₆ -1.2324e-9 22.500 1.142

A₈ 4.0898e-12 25.000 1.411

-2.75

0.0

RIGHT SURFACE

5/ 3 x 0.25; C3 x 0.25; L3 x 0.005; E0.5

R SEE TABLE

3/ 2(1/0.5)

Prot. chamfer 0.4 MAX

Tolerances are based on the diameter of the lens

Wavefront Deformation from an Element or Assembly^{14, 20}

- Builds upon surface form tolerance specification where notation changes from 3/ to 13/
- Written as 13/ A(B/C) RMSx < D; λ = E • Update: units of A, B, and C are waves instead of Value specified is needs to be measurable using a
- single-pass metrology method, typically found to be an interferometer Specification would be shown on the drawing view or
- in a total system specification section of the table Assembly deformation example:
 - 13/ RMSt < 0.04; $\lambda = 632.8 \text{ nm}$ Example states that the measured total rms wavefront error needs to be less than 0.04 waves different from the theoretical total rms wavefront
- error when tested at 632.8 nm When a dash or nothing is listed in place of one of the tolerances, that type of tolerance will not be applied

Additional Information²⁸

(2018).

All information covered here is expanded upon in the referenced citation

Diffractive Surfaces¹⁶

- Diffractive surfaces are indicated by a # inside a circle • Three properties of diffractive element must be specified, unless otherwise inferred from the type of grating
 - (transmission grating for CGH) Basic type of diffractive structure (e.g. LG = Linear
 - grating) Direction of diffracted light (e.g. RG = Reflection grating) Type of structure (e.g. SR = Surface relief grating)

Test region of diffractive structure needs to be shown in a

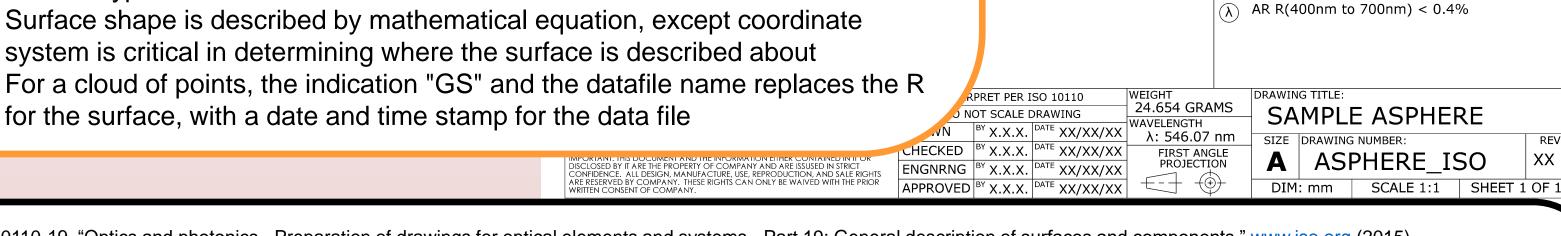
face view with proper hatching to show applicable area

(e.g. for a linear grating straight lines in the direction of the grating are shown)

diffractive parameters

Similar to effective aperture, you use $\mathcal{O}_{\#}$ Specification of type of grating is different for each basic type of diffractive structure

Linear grating: Diffractive parameters and direction of


linear grating Circular grating: Mathematical description and

Computer generated hologram: Data set for

processing and describing diffractive structure

Asphere and Freeform Surfaces^{12, 19, 29, 30}

- Both aspheric and general (freeform) surfaces are toleranced based on their surface form (as per ISO 10110-5) A sagitta table with Δz (sag) and/or Δs (slope) should be included
- Aspheric surfaces are rotationally invariant about the optical axis Surface type in tabular field is indicated as "ASP"
- Surface shape is described through a multi-term equation Conic section and a power series
- Conic section and orthogonal polynomials Multiple types of equations commonly referred to as Q-type surfaces Coefficients and equation needed to describe the surface must listed and referred to in the surface radius designation
- General (freeform) surfaces are rotationally variant across the optical surface Surface type in tabular field is indicated as "GS"
- Surface shape is described by mathematical equation, except coordinate system is critical in determining where the surface is described about For a cloud of points, the indication "GS" and the datafile name replaces the R

References (Full standard is required for proper use, poster for reference only) ISO 10110-1, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 1: General." www.iso.org (2019). ISO 10110-5, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 5: Surface form tolerances." www.iso.org (2015). Under revision

ISO 10110-6, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 6: Centring tolerances." www.iso.org (2015). Under revision ISO 10110-7, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 7: Surface imperfections." www.iso.org (2017). ISO 10110-8, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 8: Surface texture." www.iso.org (2019). ISO 10110-9, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 9: Surface treatment and coating." www.iso.org (2016)

11. ISO 10110-11, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 11: Non-tolerance data." www.iso.org (2016). Under revision

12. ISO 10110-12, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 12: Aspheric surfaces." www.iso.org (2019).

- 14. ISO 10110-14, "Optics and photonics Preparation of drawings for optical elements and systems Part 14: Wavefront deformation tolerance." www.iso.org (2018). 16. ISO 10110-16, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 16: Diffractive surfaces." www.iso.org (2023). 17. ISO 10110-17, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 17: Laser irradiation damage threshold." www.iso.org (2004) 18. ISO 10110-18, "Optics and photonics - Preparation of drawings for optical elements and systems - Part 18: Stress birefringence, bubbles and inclusions, homogeneity, and striae." www.iso.org
- 19. ISO 10110-19, "Optics and photonics Preparation of drawings for optical elements and systems Part 19: General description of surfaces and components." www.iso.org (2015). 20. ISO 14999-4, "Optics and photonics - Interferometric measurement of optical elements and optical systems - Part 4: Interpretation and evaluation of tolerances specified in ISO 10110." www.iso.org (2015). Under revision 21. ISO 14997, "Optics and photonics - Test methods for surface imperfections of optical elements." www.iso.org (2017).
- 22. ISO 9211-1, "Optics and photonics Optical coatings Part 1: Definitions." www.iso.org (2018). *Under revision* 23. ISO 9211-2, "Optics and photonics – Optical coatings – Part 2: Optical properties." www.iso.org (2010). *Under revision* 24. ISO 9211-3, "Optics and photonics – Optical coatings – Part 3: Environmental durability." www.iso.org (2008). Under revision

25. ISO 9211-4, "Optics and photonics – Optical coatings – Part 4: Specific test methods." www.iso.org (2022).

26. ISO 9022 Series, "Optics and photonics – Environmental test methods." www.iso.org (2010).

- 27. ISO 12123, "Optics and photonics Specification of raw optical glass." www.iso.org (2018). 28. Herman, E, Aikens, D. M., Youngworth, R. N., [Modern Optics Drawings: The ISO 10110 Companion], SPIE, Bellingham (2021). 29. Forbes, G. W., "Robust, efficient computational methods for axially symmetric optical aspheres." Opt. Express 18, 19700–19712 (2010).
- 30. Forbes, G. W. & Brophy, C. P., "Asphere, O Asphere, how shall we describe thee?" Proc. SPIE 7100, 710002 (2008). 31. ISO 11254-1, "Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 1: 1-on-1 test." www.iso.org (2000) 32. ISO 11254-2, "Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test." www.iso.org (2001)
- Copyright 2023 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited